Paul Ernest is a contributor to a social constructivist philosophy of mathematics. He claims that mathematical knowledge is created by human that always remain corrigible and revisable. According to him, both explicit mathematical knowledge representations and personal mathematical knowledge circulate between the worlds of education and research, which are not themselves wholly disjoint. The personal knowledge cycle is mutually refreshing for both education and research. Ernest further argues that mathematical knowledge; creation and warranting take place in historical communication that respect traditions of mathematical practices with embedded and partly tacit criteria for acceptability.

Paul Ernest was born in New York City, New York in 1944. He lived and worked in the UK since childhood apart from two years of teaching at the University of the West Indies, Jamaica. He is currently emeritus professor of the philosophy of mathematics education at Exeter University, UK. He was a student of mathematics and philosophy up to PhD level. Later, he became interested in educational issues through teaching school mathematics in London. His foremost research interest is on the nature of mathematics and how it relates on teaching, learning and society. He is best known for his work on philosophical aspects of mathematics education and contributions on social constructivist philosophy of mathematics.
As far as mathematics education in Nepal is concerned, despite its cultural traditions giving rise to several mathematical constructs, notions and perspectives, its school education has often looked towards outside, initially British-India and later many "donor" agencies who mostly brought the monocultural Western Modern Worldview as an exclusive solution for homogenizing the historically diverse Nepali societies. Oftentimes, the educational outcomes of mathematics education programs have been pessimistic possibly because of the mismatch between the imported curricular aims and pluricultural Nepali contexts.

The process of developing a vision of empowering mathematics education has often been an act of entering the minefield of ideological debates about the nature, purpose and values of mathematics in educational processes. What is the nature of mathematics? Whose mathematics should we be teaching in schools? What is the purpose of mathematics education? We encounter some of these vexing questions in our everyday life as a teacher, teacher educator and curriculum officer whilst dealing with children of different ethnic and cultural backgrounds. Whilst these questions are not only the matter of philosophical debates, but are equally important for us to develop our visions of engaging, meaningful, life-affirming and inclusive mathematics education.

In 2012, associations related with mathematics and mathematics education in Nepal have realised the fact that Nepali mathematics education perspective should reflect its multicultural character, thereby distancing themselves from the implicitly embedded view of the nature of mathematics as timeless and absolute body of knowledge. While this declaration is a very positive outcome for mathematics education professionals working towards developing an empowering mathematics education, substantive works have to be done in preparing mathematics education professionals with these sensibilities.

The school level mathematics curriculum of Nepal is exclusively guided by decontextualized notion and thereby focusing on the procedural understanding of dry mathematical problems. Due to the insufficient attention of incorporating multi cultural mathematical practices and their rich artifacts in mathematics curriculum, the public image of mathematics in general and the students’ images towards mathematics in particular have been falling down day by day. Heavy loaded contents and external evaluation for the sake of standaralized test in school level have not provided much space for teachers to maximize their own creative and critical insights. The students seem to have good routine problem solver, there by lacking the sense of mathematical ideas/concepts and creative thinking which may lead to docile and cultural insensitive citizen. One of the major false assumptions of our school mathematics is to envisage the students as future mathematicians – preparing students for heavy contents – rather than viewing them as mathematically literature potential citizens. The proposed symposium aims for discussion on possibilities of “glocal” mathematics curriculum that serves the interest of multi cultural societies together with global scenario, which may facilitate mathematics teachers, practitioners, and educators for thoughtful towards the contextualized and inclusive nature of mathematics curriculum.